Application of Convolutional Neural Networks for Tomato Fruit Ripeness Identification
DOI:
https://doi.org/10.58526/jsret.v4i1.645Keywords:
Human Visualization, Identification, Tomato Maturity, Plant Stalk, CNNAbstract
The identification of tomato ripeness is essential in agriculture to ensure quality and reduce spoilage. Traditional methods that rely on human observation are often inaccurate. This research aims to develop a CNN-based system to accurately identify tomato ripeness, focusing on the ripe and unripe categories. The images were taken while the tomatoes were still on the plant stalk with data collection involving 1.000 images of tomatoes, obtained from Kaggle andtaking pictures of tomatoesat the Poktan Welan Asri Petinggen garden tour site, Yogyakarta. The dataset was divided into training (700 images), testing (150 images), and validation (150 images). The experimental designuses the CNN model with image processing steps such as resizing, labeling, and data augmentation. Testing on this system achieved an accuracy of 92.67%. These findings demonstrate the effectiveness of CNN in detecting tomato ripeness, providing a reliable solution for farmers and agricultural stakeholders
Downloads
References
Ahmad, A., Idris, I. S. K., & Bode, A. (2023). Tomato Fruit Type Classification Using Covolutional Neural network. Jurnal Ilmiah Ilmu Komputer, 2(2), 83–89.
Ayunda, N. A., Haryatmi, E., & Riyadi, T. A. (2023). Classification of Tomato Ripeness Based on Convolutional Neural Network Methods. Journal of Information Systems and Informatics, 5(4), 1658–1675. https://doi.org/10.51519/journalisi.v5i4.613
Fadillah, R. Z., Irawan, A., Susanty, M., & Artikel, I. (2021). Data Augmentation to Overcome Data Limitations in the Indonesian Sign Language Interpreter Model (BISINDO). Jurnal Informatika, 8(2), 208–214. https://ejournal.bsi.ac.id/ejurnal/index.php/ji/article/view/10768
Febriyanti, F. A. (2024). Image Processing with Convolutional Neural Network (CNN) Method for Skin Disease Detection in Humans. Kohesi: Jurnal Sains Dan Teknologi, 3(10), 21–30. https://ejournal.warunayama.org/kohesi
Hawibowo, M. S., & Muhimmmah, I. (2024). Application of Papaya Maturity Level Detection using Android-based Convolutional Neural Network (CNN) Method. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 10(1), 162. https://doi.org/10.26418/jp.v10i1.77819
Kurniadi, B. W., Prasetyo, H., Ahmad, G. L., Aditya Wibisono, B., & Sandya Prasvita, D. (2021). Comparative Analysis of SVM and CNN Algorithms for Fruit Classification. Seminar Nasional Mahasiswa Ilmu Komputer Dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, September, 1–11.
Mulyana, S., & Muthmainnah, I. (2024). Comparative Analysis of the Accuracy Level of Cnn and Svm Algorithms in Classification on Gedi Leaves, Papaya Leaves and Ubi Leaves. JATI (Jurnal Mahasiswa Teknik Informatika), 8(4), 6157–6162. https://doi.org/10.36040/jati.v8i4.10144
Munfaati, E. A. N., & Witanti, A. (2024). Classification of Fresh or Rotten Fruits and Vegetables Using Convolutional Neural Network. JISKA (Jurnal Informatika Sunan Kalijaga), 9(1), 27–38. https://doi.org/10.14421/jiska.2024.9.1.27-38
Putri Ananda, T., Viola Widyasari, S., Ihsan Muttaqin, M., & Stefanie, A. (2023). Identification of Papaya Fruit Maturity Level Using Convolutional Neural Network (CNN) Method. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 2094–2097. https://doi.org/10.36040/jati.v7i3.7137
Putro, A. D., & Hermawan, A. (2021). Effect of Light and Image Quality in Classification of Cavendish Banana Maturity Based on Color Characteristics Using Artificial Neural Network. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 215–228. https://doi.org/10.30812/matrik.v21i1.1396
Ristiana Betris Tosi, Helena dorothea Mbura, & Yampi R Kaesmetan. (2024). CNN Implementation in Identifying Chili Maturity Based on Color. Indonesian Journal of Education And Computer Science, 2(1), 34–42. https://doi.org/10.60076/indotech.v2i1.385
Siwilopo, K. P., & Marcos, H. (2023). Comparing Classification on Citrus Fruits Using Convolutional Neural Network and K-Nearest Neighbor Methods. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(1), 57–64. https://doi.org/10.34010/komputa.v12i1.9068
Sutrisna, N. P., Sahirah, R. A., Laksono, K. S. S., Permadhi, R. A. S., Nurannisa, N., Larasati, S. S., Asmani, W. W., & Yudistira, N. (2024). Papaya Fruit Maturity Level Detection using Convolutional Neural Network Model. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(3), 569–578. https://doi.org/10.25126/jtiik.938119
Yanto, B., Fimawahib, L., Supriyanto, A., Hayadi, B. H., & Pratama, R. R. (2021). Classification of Sweet Orange Fruit Maturity Texture Based on Color Brightness Level with Deep Learning Convolutional Neural Network Method. INOVTEK Polbeng - Seri Informatika, 6(2), 259. https://doi.org/10.35314/isi.v6i2.2104
Yati, R., Rohana, T., & Pratama, A. R. (2023). Mango Type Classification Using Convolutional Neural Network Algorithm. Jurnal Media Informatika Budidarma, 7(3), 1265. https://doi.org/10.30865/mib.v7i3.6445
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julio Ignasius Wangjaya Rumbekwan, Joko Aryanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted commercial used, distribution and reproduction in any medium
JRSET is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.