Sentiment Analysis of Public Opinion on the Palestinian-Israeli Conflict using Support Vector Machine and Naïve Bayes Algorithms
DOI:
https://doi.org/10.58526/jsret.v3i4.606Keywords:
Support Vector Machine, Rafah, Naive Bayes, SMOTE, Sentiment AnalysisAbstract
The Palestinian-Israeli conflict, particularly in Rafah City, Gaza Strip, has drawn global attention due to escalating violence, prompting widespread responses on X social media. This study analyses public sentiment on the topic ‘Eyes on Rafah’ using 403 tweets, with 306 classified as positive and 94 as negative. This study aims to analyse the world's response to the prolonged conflict To evaluate these sentiments, Text Mining techniques were applied, comparing the performance of Support Vector Machine (SVM) and Naïve Bayes algorithms. SMOTE optimisation was implemented to address data imbalance and enhance algorithm performance. Findings reveal that the SVM algorithm achieved superior results with 97% accuracy, precision of 97%, recall of 100%, and F1-Score of 98%, compared to Naïve Bayes with 86% accuracy, precision of 100%, recall of 75%, and F1-Score of 85%. These results highlight the effectiveness of SVM in analysing sentiment and the critical role of SMOTE in improving classification accuracy for both algorithms.
Downloads
References
Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi Random Forest Menggunakan SMOTE untuk Analisis Sentimen Ulasan Aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi Dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/teknosi.v9i2.2023.163-172
Dimas Lutfiyanto, M., & Setiawan, E. B. (n.d.). Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest.
Duei Putri, D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1). https://doi.org/10.23960/jitet.v10i1.2262
Hanafiah, A., Haza Nasution, A., Arta, Y., Wandri, R., Nasution, H. O., Mardafora, J., & Riau, U. I. (2023). SENTIMEN ANALISIS TERHADAP CUSTOMER REVIEW PRODUK SHOPEE BERBASIS WORDCLOUD DENGAN ALGORITMA NAÏVE BAYES CLASSIFIER SENTIMENT ANALYSIS OF CUSTOMER REVIEWS OF SHOPEE PRODUCTS BASED ON WORDCLOUD USING NAÏVE BAYES CLASSIFIER ALGORITHM. Journal of Information Technology and Computer Science (INTECOMS), 6(1). https://doi.org/10.31539/intecoms.v6i1.5845
Hendrawan, I. R., Utami, E., & Hartanto, A. D. (2022). Comparison of Naïve Bayes Algorithm and XGBoost on Local Product Review Text Classification. Edumatic: Jurnal Pendidikan Informatika, 6(1), 143–149. https://doi.org/10.29408/edumatic.v6i1.5613
Hidayatullah, H., & Umaidah, Y. (2023). PENERAPAN NAÏVE BAYES DENGAN OPTIMASI INFORMATION GAIN DAN SMOTE UNTUK ANALISIS SENTIMEN PENGGUNA APLIKASI CHATGPT. In Jurnal Mahasiswa Teknik Informatika (Vol. 7, Issue 3). https://doi.org/10.36040/jati.v7i3.6887
Kurniawan, A., & Waluyo, S. (2022). Penerapan Algoritma Naive Bayes Dalam Analisis Sentimen Pemindahan Ibukota Pada Twitter Application Of Naive Bayes Algorithm In Capital Movement Sentiment Analysis On Twitter. In Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia. https://senafti.budiluhur.ac.id/index.php
Mujahidin, S., Hasyim, M. N., Pratama, B. M., & Kalimantan, I. T. (n.d.). Bianglala Informatika Implementasi Analisis Sentimen Opini Publik Mengenai Sirkuit Internasional Mandalika Pada Twitter Menggunakan Metode Multinomial Naïve Bayes Classifier. 10(2), 2022.
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).
Nugroho, A., & Rilvani, E. (n.d.). Penerapan Metode Oversampling SMOTE Pada Algoritma Random Forest Untuk Prediksi Kebangkrutan Perusahaan Application of the SMOTE Oversampling Method to the Random Forest Algorithm for Predicting Company Bankruptcy. In Februari (Vol. 22, Issue 1). https://doi.org/10.33633/tc.v22i1.7527
Oktaria Sihombing, L., & Arif Dermawan, B. (2021). Edumatic: Jurnal Pendidikan Informatika Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier. 5(2), 233–242. https://doi.org/10.29408/edumatic.v5i2.4089
Rahayu, S., MZ, Y., Bororing, J. E., & Hadiyat, R. (2022). Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP. Edumatic: Jurnal Pendidikan Informatika, 6(1), 98–106. https://doi.org/10.29408/edumatic.v6i1.5433
Sihombing, P. R., & Yuliati, I. F. (2021). Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(2), 417–426. https://doi.org/10.30812/matrik.v20i2.1174
Singgalen, Y. A. (2022). Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM. Building of Informatics, Technology and Science (BITS), 4(3). https://doi.org/10.47065/bits.v4i3.2766
Yolanda, N., Santi, I. H., Fanny, D., & Permadi, H. (2022). Analisis Sentimen Popularitas Aplikasi Moodle Dan Edmodo Menggunakan Algoritma Support Vector Machine. 3(1), 48–59. https://doi.org/10.35957/algoritme.v3i1.3313
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fadmi Fahrani, Joko Aryanto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted commercial used, distribution and reproduction in any medium
JRSET is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.