Cross-Lingual Sentiment Analysis for Indonesian Monetary Policy
DOI:
https://doi.org/10.58526/jsret.v4i4.943Keywords:
Cross-Lingual Sentiment Analysis, Auto-Labeling, Weak Supervision, RoBERTa, IndoBERT, Back-Translation, Monetary Policy, IndonesiaAbstract
This research develops a cross-lingual sentiment analysis system (RoBERTa-IndoBERT) to monitor public opinion on Bank Indonesia’s 2025 monetary policy from X (Twitter), addressing the scarcity of Indonesian labels and noisy social media text. We introduce a "translate-then-classify" pipeline: Indonesian posts are translated into English, auto-labeled by a mature English RoBERTa model, and these labels are used to fine-tune IndoBERT on the original texts. We compare this cross-lingual (CL) approach, with and without back-translation (BT) augmentation, against a baseline Indo-only model. Performance measured by Accuracy and Macro-F1 indicates the CL pipeline is substantially better than the baseline. The complete model (IndoBERT + CL + BT) yields a Macro-F1 of 98.1%, a 2.8 percentage point (pp) improvement over the baseline (95.3%). Qualitative error analysis corroborates the CL model is more stable, less prone to extreme polarity flips, and better at detecting implicit sentiment. This research demonstrates that a CL auto-labeling pipeline is an efficient and resilient solution for Indonesian sentiment analysis in low-resource scenarios.
Downloads
References
Czudaj, R. L., & Nguyen, B. N. (2025). ECB’s central bank communication and monetary policy transmission: predictability from text-based sentiment indicators? Macroeconomic Dynamics, 29. https://doi.org/10.1017/S1365100525000239
Feng, S. Y., Gangal, V., Wei, J., Chandar, S., Vosoughi, S., Mitamura, T., & Hovy, E. (2021). A Survey of Data Augmentation Approaches for NLP. Computer Science, 968–988. https://arxiv.org/abs/2105.03075
Gaurav, A., Gupta, B. B., Sharma, S., Bansal, R., & Chui, K. T. (2024). XLM-RoBERTa Based Sentiment Analysis of Tweets on Metaverse and 6G. Procedia Computer Science, 238, 902–907. https://doi.org/10.1016/j.procs.2024.06.110
Gorodnichenko, Y., Pham, T., & Talavera, O. (2025). Central bank communication on social media: What, to whom, and how? Journal of Econometrics, 249. https://doi.org/10.1016/j.jeconom.2024.105869
Kemp, S. (2024, February 21). Digital 2024: Indonesia. DATAREPORTAL. https://datareportal.com/reports/digital-2025-sub-section-top-social-platforms?
Koto, F., Rahimi, A., Lau, J. H., & Baldwin, T. (2020). IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP. Online. https://huggingface.co/
Li, B., Hou, Y., & Che, W. (2022). Data augmentation approaches in natural language processing: A survey. AI Open, 3, 71–90. https://doi.org/10.1016/j.aiopen.2022.03.001
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692
Manoppo, M. R., Kolang, I. C., Nur Fiat, D. N., Mawara, R. M. C., Sumarno, A. D. P., Yusupa, A., & Tarigan, V. (2025). ANALISIS SENTIMEN PUBLIK DI MEDIA SOSIAL TERHADAP KENAIKAN PPN 12% DI INDONESIA MENGGUNAKAN INDOBERT. Jurnal Kecerdasan Buatan Dan Teknologi Informasi, 4(2), 152–163. https://doi.org/10.69916/jkbti.v4i2.322
Pellicer, L. F. A. O., Ferreira, T. M., & Costa, A. H. R. (2023). Data augmentation techniques in natural language processing. Applied Soft Computing, 132. https://doi.org/10.1016/j.asoc.2022.109803
Picault, M., Pinter, J., & Renault, T. (2022). Media sentiment on monetary policy: determinants and relevance for inflation expectations.
Pramono, B. (2025, June 18). BI-Rate Held at 5.50% Maintaining Stability, Strengthening Economic Growth. Bank Indonesia. https://www.bi.go.id/en/publikasi/ruang-media/news-release/Pages/sp_2713325.aspx?utm_source=chatgpt.com
Přibáň, P., Šmíd, J., Steinberger, J., & Mištera, A. (2024). A comparative study of cross-lingual sentiment analysis. Expert Systems with Applications, 247(C). https://www.sciencedirect.com/science/article/abs/pii/S095741742400112X
Reuters. (2024, June 14). Indonesia c.bank intervenes to defend faltering rupiah. Reuters. https://www.reuters.com/business/finance/indonesia-cbank-says-policy-aims-ensure-inflation-controlled-rupiah-stable-2024-06-14/?utm_source=chatgpt.com
Semary, N. A., Ahmed, W., Amin, K., Pławiak, P., & Hammad, M. (2023). Improving sentiment classification using a RoBERTa-based hybrid model. Frontiers in Human Neuroscience, 17. https://doi.org/10.3389/fnhum.2023.1292010
Setiawan, D., Utari Iswavigra, D., & Anggiratih, E. (2025). Implementation of IndoBERT for Sentiment Analysis of the Constitutional Court’s Decision Regarding the Minimum Age of Vice Presidential Candidates. Scientific Journal of Informatics, 12(3). https://doi.org/10.15294/sji.v12i3.26360
Xie, Q., Dai, Z., Hovy, E., Luong, M.-T., & Le, Q. V. (2020). Unsupervised Data Augmentation for Consistency Training. https://github.com/google-research/uda.
Xu, Y., Cao, H., Du, W., & Wang, W. (2022). A Survey of Cross-lingual Sentiment Analysis: Methodologies, Models and Evaluations. In Data Science and Engineering (Vol. 7, Issue 3, pp. 279–299). Springer. https://doi.org/10.1007/s41019-022-00187-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Akbar Ramadhan, Umar Zaky

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted commercial used, distribution and reproduction in any medium
JRSET is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



