Optimizing Pneumonia Detection in X-Ray Using Binary Statistical Image Features

Authors

  • Moch Daffa Yudis Averill Universitas Teknologi Yogyakarta
  • Muhammad Zakariyah Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.58526/jsret.v4i4.904

Keywords:

CNN, BSIF, Medical Image Detection, ViT, Deep Learning, Image Classification

Abstract

Manual detection of pneumonia from X-ray images still faces challenges due to the long processing time, high cost, and strong dependence on radiologist expertise. This dependence increases the risk of delayed diagnosis and interpretation errors, potentially worsening patient conditions. To address these issues, this study proposes optimizing pneumonia detection using deep learning through the application of Binary Statistical Image Feature (BSIF) feature extraction. BSIF highlights important texture patterns in X-ray images to enhance the model’s ability to recognize pneumonia affected lung areas. The dataset consists of 2,239 chest X-ray images divided into two categories: normal lungs and pneumonia. The research stages include image preprocessing, BSIF feature extraction, model training using Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures, and performance evaluation based on precision, recall, f1-score, specificity, and ROC AUC. The results show that the CNN+BSIF combination achieved the best performance with 99.69% training accuracy and 79.17% validation accuracy, precision 87%, recall 72%, f1-score 74%, specificity 45.30%, and ROC AUC 94.08%. Meanwhile, ViT+BSIF reached 99.35% accuracy, CNN without BSIF 98.24%, and ViT without BSIF 90.16%. Therefore, CNN+BSIF proved to be the most optimal method for fast and accurate pneumonia detection.

Downloads

Download data is not yet available.

References

Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. GEOMATIKA, 24(2), 61. https://doi.org/10.24895/JIG.2018.24-2.810

Cahyanto, H. N., Zulkarnain, O., Farida, D., Kesehatan, I., & Surabaya, B. (2023). Pengembangan Deteksi Dini Dan Penanganan Pneumonia Menggunakan Expert System Berbasis Web. . . Jurnal Kesehatan Tambusai, 4(4), 5182–5187.

Inonu, O. Y., Magda, K., & Amarudin, A. (2025). Analisis Kinerja Algoritma Random Forest Dengan Model Machine Learning Pada Dataset Penyakit Diabetes. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 15(1), 1. https://doi.org/10.36448/expert.v15i1.4312

Intyanto, G. W. (2021). Klasifikasi Citra Bunga dengan Menggunakan Deep Learning: CNN (Convolution Neural Network). Jurnal Arus Elektro Indonesia, 7(3), 80. https://doi.org/10.19184/jaei.v7i3.28141

Lorinez S, Y., Yusuf Al Hafiz, A., Khoiri Nasution, A., Denil Sitepu, A., & Syahputra, H. (2025). Implementasi Teknik Histogram Equalization Untuk Meningkatkan Kualitas Citra Pada Foto Lama Yang Pudar. JATI (Jurnal Mahasiswa Teknik Informatika), 9(5), 7524–7530. https://doi.org/10.36040/jati.v9i5.14723

Nabuasa, M., Turu Allo, D., Reuben Suwitono, M., Studi Farmasi, P., & Matematika dan Ilmu Pengetahuan Alam, F. (2024). Analisis Efektivitas Biaya (Cost Effectiveness Analysis) Penggunaan Antibiotik Pada Pasien Pneumonia Di Rumah Sakit X Bandung. INNOVATIVE: Journal Of Social Science Research, 4, 7690–7705.

Ningsih, N., Ramadhani, A., Santoso, D., Ramadhani, B. D., & Ghofiqi, I. A. El. (2024). Penggunaan Metode Deep Learning untuk Pengembangan Sistem Komunikasi Cerdas bagi Penyandang Disabilitas. MIND Journal, 9(2), 206–219. https://doi.org/10.26760/mindjournal.v9i2.206-219

Nova, N., Mulyanti, A., Burhanie, C. S. A. P., Mulyani, L., Nurjanah, R. G., Utami, W., & Sukaesih, N. S. (2025). Systematic Review: Pemanfaatan Deep Learning untuk Diagnosis Penyakit Menggunakan MRI. Jurnal Penelitian Inovatif, 5(2), 839–852. https://doi.org/10.54082/jupin.1336

Pellicer, L. F. A. O., Ferreira, T. M., & Costa, A. H. R. (2023). Data augmentation techniques in natural language processing. Applied Soft Computing, 132, 109803. https://doi.org/10.1016/j.asoc.2022.109803

Rachman, H., Nuradi, N., Nasir, M., Nurdin, N., & Patricia Hopwood Pasauran, J. (2024). Penentuan Spesies Jamur Pada Sampel Sputum Pasien Pneumonia di UPF BBKPM RSUP Dr. Tadjuddin Chalid Makassar. Jurnal Media Analis Kesehatan, 15(2), 140–146. https://doi.org/10.32382/jmak.v15i2.1200

Rubio, A., & Magnier, B. (2024). Preprocessing of Iris Images for BSIF-Based Biometric Systems: Binary Detected Edges and Iris Unwrapping. Sensors, 24(15), 4805. https://doi.org/10.3390/s24154805

Satria Wiratama, A., Rifqi, M., Maesaroh, S., & Mercubuana, U. (2023). Efektivitas Transfer Learning Dalam Pendeteksian Penyakit Pneumonia Melalui Citra X-Ray Paru Manusia. Jurnal Ilmiah Sains Dan Teknologi, 7(1), 43–52.

Utami, D. Y., Nurlelah, E., & Hasan, F. N. (2021). Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes. Journal of Informatics And Telecommunication Engineering, 5(1), 53–64. https://doi.org/10.31289/jite.v5i1.5201

Wibisono, A. D. R., Mandyartha, E. P., & Al Haromainy, M. M. (2025). Klasifikasi Penyakit Kulit Berbasis Support Vector Machine Dengan Ekstraksi Fitur Abcd Rule. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 10(1), 686–698. https://doi.org/10.29100/jipi.v10i1.6039

Yan, H., Mubonanyikuzo, V., Komolafe, T. E., Zhou, L., Wu, T., & Wang, N. (2025). Hybrid-RViT: Hybridizing ResNet-50 and Vision Transformer for Enhanced Alzheimer’s disease detection. PLOS ONE, 20(2), e0318998. https://doi.org/10.1371/journal.pone.0318998

Yopento, J., & Coastera, F. (2022). Identifikasi Pneumonia Pada Citra X-Ray Paru-Paru Menggunakan Metode Convolutional Neural Network (Cnn) Berdasarkan Ekstraksi Fitur Sobel. Jurnal Rekursif, 10(1). http://ejournal.unib.ac.id/index.php/rekursif/40

Zakariyah, M., & Hermawan, A. (2022). Identifikasi Jejak Macan dan Anjing Menggunakan Momen Invarian dan Jaringan Saraf Tiruan Backpropagation. EXPLORE, 12(1), 39–49.

Downloads

Published

2025-11-12

How to Cite

Averill, M. D. Y., & Zakariyah, M. (2025). Optimizing Pneumonia Detection in X-Ray Using Binary Statistical Image Features. Journal of Scientific Research, Education, and Technology (JSRET), 4(4), 2129–2150. https://doi.org/10.58526/jsret.v4i4.904