Optimizing Pneumonia Detection in X-Ray Using Binary Statistical Image Features
DOI:
https://doi.org/10.58526/jsret.v4i4.904Keywords:
CNN, BSIF, Medical Image Detection, ViT, Deep Learning, Image ClassificationAbstract
Manual detection of pneumonia from X-ray images still faces challenges due to the long processing time, high cost, and strong dependence on radiologist expertise. This dependence increases the risk of delayed diagnosis and interpretation errors, potentially worsening patient conditions. To address these issues, this study proposes optimizing pneumonia detection using deep learning through the application of Binary Statistical Image Feature (BSIF) feature extraction. BSIF highlights important texture patterns in X-ray images to enhance the model’s ability to recognize pneumonia affected lung areas. The dataset consists of 2,239 chest X-ray images divided into two categories: normal lungs and pneumonia. The research stages include image preprocessing, BSIF feature extraction, model training using Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures, and performance evaluation based on precision, recall, f1-score, specificity, and ROC AUC. The results show that the CNN+BSIF combination achieved the best performance with 99.69% training accuracy and 79.17% validation accuracy, precision 87%, recall 72%, f1-score 74%, specificity 45.30%, and ROC AUC 94.08%. Meanwhile, ViT+BSIF reached 99.35% accuracy, CNN without BSIF 98.24%, and ViT without BSIF 90.16%. Therefore, CNN+BSIF proved to be the most optimal method for fast and accurate pneumonia detection.
Downloads
References
Arrofiqoh, E. N., & Harintaka, H. (2018). Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi. GEOMATIKA, 24(2), 61. https://doi.org/10.24895/JIG.2018.24-2.810
Cahyanto, H. N., Zulkarnain, O., Farida, D., Kesehatan, I., & Surabaya, B. (2023). Pengembangan Deteksi Dini Dan Penanganan Pneumonia Menggunakan Expert System Berbasis Web. . . Jurnal Kesehatan Tambusai, 4(4), 5182–5187.
Inonu, O. Y., Magda, K., & Amarudin, A. (2025). Analisis Kinerja Algoritma Random Forest Dengan Model Machine Learning Pada Dataset Penyakit Diabetes. EXPERT: Jurnal Manajemen Sistem Informasi Dan Teknologi, 15(1), 1. https://doi.org/10.36448/expert.v15i1.4312
Intyanto, G. W. (2021). Klasifikasi Citra Bunga dengan Menggunakan Deep Learning: CNN (Convolution Neural Network). Jurnal Arus Elektro Indonesia, 7(3), 80. https://doi.org/10.19184/jaei.v7i3.28141
Lorinez S, Y., Yusuf Al Hafiz, A., Khoiri Nasution, A., Denil Sitepu, A., & Syahputra, H. (2025). Implementasi Teknik Histogram Equalization Untuk Meningkatkan Kualitas Citra Pada Foto Lama Yang Pudar. JATI (Jurnal Mahasiswa Teknik Informatika), 9(5), 7524–7530. https://doi.org/10.36040/jati.v9i5.14723
Nabuasa, M., Turu Allo, D., Reuben Suwitono, M., Studi Farmasi, P., & Matematika dan Ilmu Pengetahuan Alam, F. (2024). Analisis Efektivitas Biaya (Cost Effectiveness Analysis) Penggunaan Antibiotik Pada Pasien Pneumonia Di Rumah Sakit X Bandung. INNOVATIVE: Journal Of Social Science Research, 4, 7690–7705.
Ningsih, N., Ramadhani, A., Santoso, D., Ramadhani, B. D., & Ghofiqi, I. A. El. (2024). Penggunaan Metode Deep Learning untuk Pengembangan Sistem Komunikasi Cerdas bagi Penyandang Disabilitas. MIND Journal, 9(2), 206–219. https://doi.org/10.26760/mindjournal.v9i2.206-219
Nova, N., Mulyanti, A., Burhanie, C. S. A. P., Mulyani, L., Nurjanah, R. G., Utami, W., & Sukaesih, N. S. (2025). Systematic Review: Pemanfaatan Deep Learning untuk Diagnosis Penyakit Menggunakan MRI. Jurnal Penelitian Inovatif, 5(2), 839–852. https://doi.org/10.54082/jupin.1336
Pellicer, L. F. A. O., Ferreira, T. M., & Costa, A. H. R. (2023). Data augmentation techniques in natural language processing. Applied Soft Computing, 132, 109803. https://doi.org/10.1016/j.asoc.2022.109803
Rachman, H., Nuradi, N., Nasir, M., Nurdin, N., & Patricia Hopwood Pasauran, J. (2024). Penentuan Spesies Jamur Pada Sampel Sputum Pasien Pneumonia di UPF BBKPM RSUP Dr. Tadjuddin Chalid Makassar. Jurnal Media Analis Kesehatan, 15(2), 140–146. https://doi.org/10.32382/jmak.v15i2.1200
Rubio, A., & Magnier, B. (2024). Preprocessing of Iris Images for BSIF-Based Biometric Systems: Binary Detected Edges and Iris Unwrapping. Sensors, 24(15), 4805. https://doi.org/10.3390/s24154805
Satria Wiratama, A., Rifqi, M., Maesaroh, S., & Mercubuana, U. (2023). Efektivitas Transfer Learning Dalam Pendeteksian Penyakit Pneumonia Melalui Citra X-Ray Paru Manusia. Jurnal Ilmiah Sains Dan Teknologi, 7(1), 43–52.
Utami, D. Y., Nurlelah, E., & Hasan, F. N. (2021). Comparison of Neural Network Algorithms, Naive Bayes and Logistic Regression to predict diabetes. Journal of Informatics And Telecommunication Engineering, 5(1), 53–64. https://doi.org/10.31289/jite.v5i1.5201
Wibisono, A. D. R., Mandyartha, E. P., & Al Haromainy, M. M. (2025). Klasifikasi Penyakit Kulit Berbasis Support Vector Machine Dengan Ekstraksi Fitur Abcd Rule. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 10(1), 686–698. https://doi.org/10.29100/jipi.v10i1.6039
Yan, H., Mubonanyikuzo, V., Komolafe, T. E., Zhou, L., Wu, T., & Wang, N. (2025). Hybrid-RViT: Hybridizing ResNet-50 and Vision Transformer for Enhanced Alzheimer’s disease detection. PLOS ONE, 20(2), e0318998. https://doi.org/10.1371/journal.pone.0318998
Yopento, J., & Coastera, F. (2022). Identifikasi Pneumonia Pada Citra X-Ray Paru-Paru Menggunakan Metode Convolutional Neural Network (Cnn) Berdasarkan Ekstraksi Fitur Sobel. Jurnal Rekursif, 10(1). http://ejournal.unib.ac.id/index.php/rekursif/40
Zakariyah, M., & Hermawan, A. (2022). Identifikasi Jejak Macan dan Anjing Menggunakan Momen Invarian dan Jaringan Saraf Tiruan Backpropagation. EXPLORE, 12(1), 39–49.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Moch Daffa Yudis Averill, Muhammad Zakariyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted commercial used, distribution and reproduction in any medium
JRSET is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



