Hierarchical Clustering for Rice Planting Season Recommendations in Subak Tabanan
DOI:
https://doi.org/10.58526/jsret.v4i4.897Keywords:
Hierarchical Clustering, Rice Harvest, Planting Season, Subak TabananAbstract
This research applies hierarchical clustering to classify rice harvest periods in Subak Tabanan, Bali, using monthly harvest area data from 2020–2024. The objective is to identify seasonal patterns that can guide planting recommendations for local farmers. Data preprocessing involved standardization and transformation into numerical format suitable for clustering. The analysis focused on three clusters representing rainy season, transitional season, and dry season. The results indicate that most months fall within the rainy season cluster, while transitional months and a single dry month were distinctly identified. The silhouette score value shows moderate clustering performance, indicating that hierarchical clustering is capable of distinguishing planting seasons effectively. Visualization through dendrogram and distribution charts supported the identification of cluster groups. This study contributes to agricultural decision support systems, particularly in improving planting strategies and ensuring rice production sustainability in Subak Tabanan.
Downloads
References
Guevara-Viejó, F., & Martínez, S. (2021). Application of K-Means clustering to assess agricultural production systems. Agronomy, 11(6), 1123. https://doi.org/10.3390/agronomy11061123
Ran, X. (2023). Comprehensive survey on hierarchical clustering. Artificial Intelligence Review, 56(1), 1–30. https://doi.org/10.1007/s10462-022-10366-3
Srinivasan, D. (2025). Energy efficient hierarchical clustering based dynamic data fusion for smart agriculture. Scientific Reports, 15(1), 1–13. https://doi.org/10.1038/s41598-024-85076-7
Jaeger, S. (2023). Cluster analysis: A modern statistical review. Wiley Interdisciplinary Reviews: Computational Statistics, 15(2), e1597. https://doi.org/10.1002/wics.1597
Li, H. Y. (2025). Fast dynamic time warping and hierarchical clustering for crop variety classification. Agronomy, 15(1), 82. https://doi.org/10.3390/agronomy15010082
Boyko, N. I. (2023). Hierarchical clustering algorithm for dendrogram construction and cluster counting. International Journal of Mathematical Models and Methods in Applied Sciences, 17(1), 1–10. https://doi.org/10.5281/zenodo.4567890
Paddo, A. R. (2023). Hierarchical cluster analysis: An in-depth exploration. Sprinkle Data Science Blog. Retrieved from https://www.sprinkledata.com/blogs/hierarchical-cluster-analysis-an-in-depth-exploration
Li, J. (2024). A hierarchical RF-XGBoost model for short-cycle crop yield prediction. Foods, 13(18), 2936. https://doi.org/10.3390/foods13182936
Fang, W. (2024). Assessment of agricultural development level based on hierarchical clustering and principal component analysis. Proceedings of the International Conference on Agricultural Engineering, 1, 1–10. https://doi.org/10.1145/3670085.3670086
Gray, A. (2023). Hierarchical clustering with dot products recovers hidden structures in data. NeurIPS 2023 Conference Proceedings. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2023/hash/6521937507d78f327cd402401be73bf2-Abstract-Conference.html
Singh, J. (2024). A comprehensive review of clustering techniques in data mining. Procedia Computer Science, 185, 1–10. https://doi.org/10.1016/j.procs.2024.03.001
Javadi, H., et al. (2022). Clustering and smoothing pipeline for management zone delineation. Sensors, 22(9), 1–18. https://doi.org/10.3390/s22020645
Rosiana, R., Prihartono, W., & Fathurrohman. (2025). Implementasi algoritma K-Means untuk pengelompokan kecamatan berdasarkan produktivitas tanaman padi di Kabupaten Cirebon. Jurnal Informatika Terapan, 9(1), 1–10. https://doi.org/10.54914/jit.v11i1.1555
Sanela, I., Nazir, et al. (2023). Penerapan metode clustering dengan K-Means untuk memetakan potensi tanaman padi di Sumatera. Journal of System and Informatics, 7(2), 88–95. https://doi.org/10.47065/josyc.v5i1.4523
Shawon, S. M., et al. (2024). Machine learning in agriculture: Crop yield prediction – A comprehensive review. Artificial Intelligence in Agriculture, 15, 74–95. https://doi.org/10.1016/j.atech.2024.100718
Farismana, R. (2024). Penerapan K-Means clustering untuk pemetaan produktivitas padi dan prediksi panen di Kabupaten Indramayu. Jurnal Ilmu Sosial dan Manajemen Review (JISAMAR), 5(2), 100–110. https://doi.org/10.52362/jisamar.v8i3.1572
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ni Made Cahyani Dewi, Ahmad Tri Hidayat

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright @2022. This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted commercial used, distribution and reproduction in any medium
JRSET is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



