Predicting Student’s Cumulative Grade (IPK) using Linear Regression with Variation in Testing Data Size

Authors

  • Munzir Absa Universitas Malikussaleh

DOI:

https://doi.org/10.58526/jsret.v4i1.675

Keywords:

Cumulative Grade, Study Time, Linear Regression, Testing Data Size

Abstract

Higher education is a crucial part in the education of Indonesian youngsters. Some of the most important part of higher education for students as well as for institutions are cumulative grade (IPK) and study time. The purpose of this study is to find the relation between study time and cumulative grade, or more precisely to predict cumulative grade based on study time. This prediction is done using the linear regression formula. The data are collected from the academic database of Faculty of Teacher Training and Education, Malikussaleh University. The data are then preprocessed and split into training data and testing data. The size of the testing data is varied to find the most optimal one. After training and testing, it was found that the most optimal size of testing data is 6%, which resulted in Root Mean Square Error (RMSE) of 0.1481 and R-squared (R2) of 0.6109. Though the result of these metrics are relatively worse compared to previous studies using linear regression, it can still be used to help find the optimal test size. To achieve better metrics, more data need to be collected from longer range of years.

Downloads

Download data is not yet available.

References

Absa, M., & Setiawan, T. (2023). Comparison of Different Weight Optimization Algorithm in Neural Network to Predict Mechanical Properties of AAC Lightweight Brick. Journal of Scientific Research, Education, and Technology (JSRET), 2(1), 235–241.

Absa, M., Setiawan, T., Fatwa, I., & Hidayat, A. T. (2023). MLP neural network in google colaboratory to predict mechanical properties of manufactured-sand concrete. Jurnal Mantik, 6(4), 3679–3687.

Adiguno, S., Syahra, Y., & Yetri, M. (2022). Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(4), 275. https://doi.org/10.53513/jursi.v1i4.5331

Destria, A., Nurlita, A., & Terttiaavini. (2023). Analisis Prediksi Pemilihan Mata Kuliah Peminatan pada Jurusan Teknik Informatika Universitas Indo Global Mandiri Menggunakan Metode Linier Regresi. Journal Innovations Computer Science, 2(1), 1–6. https://doi.org/10.56347/jics.v2i1.119

Dubbs, A. (2024). Test Set Sizing via Random Matrix Theory. Operations Research Forum, 5(1), 17. https://doi.org/10.1007/s43069-024-00292-1

Hariningrum, R.-, Yogatama, Y.-, & Utomo, S. B. (2024). Pemodelan Estimasi Kelulusan Mahasiswa Berbasis Data Akademik Melalui Regresi Linier Berganda. INOVTEK Polbeng - Seri Informatika, 9(1), 192–202. https://doi.org/10.35314/isi.v9i1.4034

Harsiti, Muttaqin, Z., & Srihartini, E. (2022). Penerapan Metode Regresi Linier Sederhana Untuk Prediksi Persediaan Obat Jenis Tablet. JSiI (Jurnal Sistem Informasi), 9(1), 12–16. https://doi.org/10.30656/jsii.v9i1.4426

Hartatik, H. (2021). Optimasi Model Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Naive Bayes. Indonesian Journal of Applied Informatics, 5(1), 32. https://doi.org/10.20961/ijai.v5i1.44379

Hidayat, T., Darnis, R., & Hidayatussa’adah, D. (2024). ALGORITMA REGRESI LINIER BERGANDA UNTUK ANALISIS EFISIENSI STOK PRODUK DI PT. MADU PRAMUKA BATANG. Jurnal Informatika dan Teknik Elektro Terapan, 12(3). https://doi.org/10.23960/jitet.v12i3.4899

Ihsani Raehan, M. F., Budiman Kusdinar, A., & Indrayana, D. (2024). PENERAPAN REGRESI LINIER BERGANDA UNTUK MEMPREDIKSI HASIL PANEN KACANG KEDELAI. JATI (Jurnal Mahasiswa Teknik Informatika), 8(5), 10572–10579. https://doi.org/10.36040/jati.v8i5.11032

Kusuma, M. D. H., & Hidayat, S. (2024). Penerapan Model Regresi Linier dalam Prediksi Harga Mobil Bekas di India dan Visualisasi dengan Menggunakan Power BI. Jurnal Indonesia : Manajemen Informatika dan Komunikasi, 5(2), 1097–1110. https://doi.org/10.35870/jimik.v5i2.629

Malik, H. H., Muhammad, A. H., & Kusnawi, K. (2024). PENERAPAN ALGORITMA MONTE CARLO UNTUK MEMPREDIKSI IPS DAN IPK BERDASARKAN KARAKTERISTIK MAHASISWA PERGURUAN TINGGI X DI KOTA CIREBON. TECHNOVATAR Jurnal Teknologi, Industri, dan Informasi, 2(4), 81–96. https://doi.org/10.61434/technovatar.v2i4.225

Prasetyo, A., Salahuddin, S., & Amirullah, A. (2021). Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda. Jurnal Infomedia, 6(2), 76. https://doi.org/10.30811/jim.v6i2.2343

Rahmawati, D., Kristanto, T., Setya Pratama, B. F., & Abiansa, D. B. (2022). Prediksi Pelaku Perjalanan Luar Negeri Di Masa Pandemi COVID-19 Menggunakan Metode Regresi Linier Sederhana. Journal of Information System Research (JOSH), 3(3), 338–343. https://doi.org/10.47065/josh.v3i3.1507

Tampil, Y., Komaliq, H., & Langi, Y. (2017). Analisis Regresi Logistik Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado. d’CARTESIAN, 6(2), 56. https://doi.org/10.35799/dc.6.2.2017.17023

Wibowo, A., Manongga, D., & Purnomo, H. D. (2020). The Utilization of Naive Bayes and C.45 in Predicting The Timeliness of Students’ Graduation. Scientific Journal of Informatics, 7(1), 99–112. https://doi.org/10.15294/sji.v7i1.24241

Downloads

Published

2025-02-01

How to Cite

Absa, M. (2025). Predicting Student’s Cumulative Grade (IPK) using Linear Regression with Variation in Testing Data Size. Journal of Scientific Research, Education, and Technology (JSRET), 4(1), 118–125. https://doi.org/10.58526/jsret.v4i1.675