Hyperparameter Optimization of CNN for Coffee Berry Disease Classification Using the Artificial Bee Colony Algorithm

Authors

  • Faiz Fadilah Universitas Teknologi Yogyakarta
  • Donny Avianto Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.58526/jsret.v3i4.605

Keywords:

Coffee Berry Diseases, Artificial Bee Colony, Convolutional Neural Network, Optimization

Abstract

Indonesia is one of the world's largest coffee producers, with a significant contribution to the global market. However, extreme weather challenges, such as the El Nino phenomenon, have led to a decline in coffee production of up to 30%, affecting the quality and quantity of coffee beans. A major challenge in coffee cultivation is coffee berry diseases, such as the coffee berry borer and coffee berry damage, which can cause up to 60% crop loss. Early detection of these diseases is essential to reduce losses and preserve coffee quality. This study seeks to enhance the performance of a Convolutional Neural Network (CNN) model for coffee berry disease classification by optimizing hyperparameters using the Artificial Bee Colony (ABC) algorithm. The research dataset consists of 2100 images with three categories: Healthy Berry, Berry Borer, and Berry Damage. The research stages include data preprocessing, CNN model design, hyperparameter optimization, training, and model evaluation. The results showed that the application of the ABC algorithm succeeded in significantly improving the accuracy of the CNN model compared to the method without optimization. The accuracy result obtained is 97.14% with an architecture consisting of 3 convolutional layers and 3 fully connected layers. This finding makes a real contribution to the development of meta-heuristic-based optimization techniques for coffee fruit disease classification, as well as supporting efforts to improve coffee quality amid the challenges of global climate change.

Downloads

Download data is not yet available.

References

Alaidi, A. H., Soong Der, C. S., & Weng Leong, Y. (2021). Systematic Review of Enhancement of Artificial Bee Colony Algorithm Using Ant Colony Pheromone. International Journal of Interactive Mobile Technologies (IJIM), 15(16), 172. https://doi.org/10.3991/ijim.v15i16.24171

Anton, Nissa, N. F., Janiati, A., Cahya, N., & Astuti, P. (2021). Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification. Scientific Journal of Informatics, 8(1), 144–153. https://doi.org/10.15294/sji.v8i1.26888

Asyrofiyyah, N., & Sugiharti, E. (2024). Hyperparameter Optimization Using Hyperband in Convolutional Neural Network for Image Classification of Indonesian Snacks. Recursive Journal of Informatics, 2(1), 45–53. https://doi.org/10.15294/rji.v2i1.72720

Blume, S., Benedens, T., & Schramm, D. (2021). Hyperparameter Optimization Techniques for Designing Software Sensors Based on Artificial Neural Networks. Sensors, 21(24), 8435. https://doi.org/10.3390/s21248435

Dogan, V., & Prestwich, S. (2024). BHO-MA: Bayesian Hyperparameter Optimization with Multi-objective Acquisition. In A. I. Pereira, A. Mendes, F. P. Fernandes, M. F. Pacheco, J. P. Coelho, & J. Lima (Eds.), Optimization, Learning Algorithms and Applications (pp. 391–408). Springer Nature Switzerland.

Freitas, V. V., Borges, L. L. R., Vidigal, M. C. T. R., dos Santos, M. H., & Stringheta, P. C. (2024). Coffee: A comprehensive overview of origin, market, and the quality process. Trends in Food Science & Technology, 146, 104411. https://doi.org/10.1016/j.tifs.2024.104411

Ghosh, A., & Jana, N. D. (2022). Artificial Bee Colony Optimization based Optimal Convolutional Neural Network Architecture Design. 2022 IEEE 19th India Council International Conference (INDICON), 1–7. https://doi.org/10.1109/INDICON56171.2022.10040217

ICO - International Coffee Organization. (2023). Coffee Report and Outlook. https://icocoffee.org/documents/cy2023-24/Coffee_Report_and_Outlook_December_2023_ICO.pdf

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x

Karaman, A., Karaboga, D., Pacal, I., Akay, B., Basturk, A., Nalbantoglu, U., Coskun, S., & Sahin, O. (2023). Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection. Applied Intelligence, 53(12), 15603–15620. https://doi.org/10.1007/s10489-022-04299-1

Khan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167, 1444–1451. https://doi.org/10.1016/j.procs.2020.03.355

Kurnianto, A. S., Haryadi, N. T., Dewi, N., Pamungkas, A. S. P., Magvira, N. L., & Septiadi, L. (2024). The best way to the trap: An ecological study of coffee berry borer (Hypothenemus hampei) preference to several volatile compounds. Jurnal Hama Dan Penyakit Tumbuhan Tropika, 24(2), 223–232. https://doi.org/10.23960/jhptt.224223-232

Michael, A., & Rusman, J. (2023). Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch. Jurnal Teknologi Dan Manajemen Informatika, 9(1), 37–45. https://doi.org/10.26905/jtmi.v9i1.10035

Muhamad, N. (2023, July 6). Indonesia Jadi Produsen Kopi Terbesar Ketiga di Dunia pada 2022/2023. Databoks Katadata. https://databoks.katadata.co.id/agroindustri/statistik/cbf9d1ae8716dbf/indonesia-jadi-produsen-kopi-terbesar-ketiga-di-dunia-pada-20222023

Özdemir, K., Ozen, Y., & Tuncer, A. (2021). Artificial Bee Colony Algorithm Based Hyper- Parameter Optimization for Convolutional Neural Networks. Conference: International Conference on Interdisciplinary Applications of Artificial Intelligence (ICIDAAI).

Su, H., Zhao, D., Yu, F., Heidari, A. A., Zhang, Y., Chen, H., Li, C., Pan, J., & Quan, S. (2022). Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images. Computers in Biology and Medicine, 142, 105181. https://doi.org/10.1016/j.compbiomed.2021.105181

Talha, M. M., Khan, H. U., Iqbal, S., Alghobiri, M., Iqbal, T., & Fayyaz, M. (2023). Deep learning in news recommender systems: A comprehensive survey, challenges and future trends. Neurocomputing, 562, 126881. https://doi.org/10.1016/j.neucom.2023.126881

Downloads

Published

2024-12-25

How to Cite

Fadilah, F., & Avianto, D. (2024). Hyperparameter Optimization of CNN for Coffee Berry Disease Classification Using the Artificial Bee Colony Algorithm. Journal of Scientific Research, Education, and Technology (JSRET), 3(4), 1877–1889. https://doi.org/10.58526/jsret.v3i4.605